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Background

Humans visually sample the world by intermittently stabilizing gaze onto discrete targets in
their environment. Such fixations are interrupted by saccades, during which gaze is rapidly
redirected onto the next target in the visual scene. In dynamic contexts, i.e. one of the
intended use-scenarios of our eye trackers, fixational gaze stabilization is achieved by
compensatory eye movements counteracting head and body motion. In other words, even
while fixating visual targets, our eyes are almost never completely at rest.

The above functional definition of a fixation [1] is well suited for the context of
head-mounted eye tracking and was therefore adopted for the Pupil Labs fixation detector.
Every time interval during which gaze is stabilized towards a visual target is considered a
fixation, explicitly including compensatory eye movements in the presence of head or body
motion.

In eye-tracking studies employing remote eye trackers with head-restrained subjects, gaze
direction can often be expressed in a world-centered coordinate system, e.g. pixel
coordinates of a stimulus screen. In such a setup, a standard approach to automated
fixation detection is the I-VT (identification by velocity threshold) algorithm, which classifies
all samples with gaze velocities below a given threshold value as belonging to a fixation.

For freely moving subjects wearing one of our head-mounted eye trackers, a naive
application of the I-VT approach, however, would be prone to errors. Here, gaze direction is
given in a subject-centered coordinate system, more specifically in the pixel space of the
front-facing scene camera. When a subject moves their head during a fixation, the
perspective view of the fixated visual target changes. This induces a concomitant shift of the
measured gaze direction in scene camera space. Hence, fixations are not necessarily well
characterized by low gaze velocities in this case.

With this in mind, we developed a method for the Pupil Labs fixation detector that works
robustly and accurately under both dynamic and static conditions. For an in-depth
discussion and evaluation of our approach see our peer-reviewed publication [2]. Our aim
was to have a transparent processing pipeline that guarantees interpretability of internal
operations and parameters. To achieve this, we extended the classic I-VT algorithm with
three additional modules:

1. We use an optic-flow-based velocity-correction stage which effectively compensates
for dynamic gaze stabilization during head and body turns.

2. We use an adaptive velocity threshold which adjusts the sensitivity of the algorithm
according to the intensity of head motion.



3. We use a set of event-based post-processing filters.

In practice, we estimate global optic flow in scene-camera pixel space based on the output
of the inertial measurement unit (IMU). As the IMU provides a direct quantification of head
motion, this approach is equivalent to, but computationally more efficient than calculating
global optic flow from the video stream. We fall back to the latter option whenever the IMU
sensor stream is unavailable.

All parameters of the algorithm (see the next section) were optimized on device-specific
in-house datasets, comprising hand-labeled fixations from both static and dynamic
real-world scenarios. Note that the algorithm is optimized towards fixation detection
performance, not saccade detection performance. While gaps between fixations often
represent saccades, sometimes they also reflect periods of mere low signal-to-noise ratio.
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Figure 1: Pupil Neon Fixation Detector



Implementation details

In the following, we will describe the full algorithmic pipeline of the Pupil Labs fixation
detector. Parameters given in the text are for Neon. Corresponding parameters for Pupil
Invisible are provided in the last paragraph.

The Pupil Labs fixation detector (see Figure 1) takes three data streams as input: the time
series of gaze data at 200Hz, the video from the front-facing scene camera at 30Hz, as well
as the time series of IMU measurements at 110 Hz (when available).

(1) The gaze data is first low-pass filtered using a Savitzky-Golay filter with 55 ms window
length and a polynomial of 3rd grade.

(2) Gaze velocity v s computed from the filtered gaze data as the forward difference

between consecutive samples in pixels/sec.

(3) Optic flow is estimated for each frame of the scene camera video by transforming the
concurrent movement of the eye tracking headset as measured by the IMU into
corresponding translation vectors of pixels in the visual field of the scene camera. Optic flow
vectors are computed in pixels/sec on a regular grid with a spacing of 100 pixels. Whenever
the IMU is not available for a recording, optic flow is calculated directly from consecutive
video frames using the Lucas-Kanade method as a fallback (3*).

(4) Then, for each frame a global optic flow vector o is constructed by averaging all optic
flow vectors over space. It is then upsampled to 200Hz via linear interpolation. This global
optic flow vector represents an estimate of whole-field motion of the visual scene, as elicited
mainly by head rotations and body turns (same for 4%).

(5) Next, we correct the gaze veIocity@ by subtracting the global optic flow o and calculate
the magnitude of the resulting vector, thus constructing a measure of relative gaze velocity
;m. This step is based on the notion that in the case of gaze stabilization, image content

needs to move in unison with the gaze point in scene camera coordinates. Any significant
deviation from a parallel movement of gaze and image content corresponds to a shift in the
specific gaze target, i.e. indicating the end of a fixation. From this follows that relative gaze
velocity is suitable as an input to an I-VT algorithm, which assumes that gaze velocity must
be low during fixations.

(6) Instead of using a standard fixed velocity threshold, however, we use an adaptive
threshold which is modulated by the general level of intensity of optic flow during a time
interval. This accounts for the fact that optic flow compensation might work less precisely
during swift movements of the subject, e.g. head or body turns, due to motion-blur in the
camera image or gaze prediction errors at such moments. The value of the adaptive
threshold is set as
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where v, is @ minimum velocity threshold, g is a gain factor, and RMS _is an estimate of the

magnitude of optic flow within a time window. The value of RMS s calculated as
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where 0 and o are the x- and y-components of o, respectively. The sum is taken over all n

samples within a sliding window of 300 ms length (200 ms for the fallback option). For the
other parameters, the Pupil Labs fixation detector for Neon uses v, = 750 px/s (700 px/s for

the fallback option) and g = 0.8.

(7) The adaptive velocity threshold is then applied as a classification criterion, analogously
to a standard I-VT algorithm: samples below the threshold are considered to be part of a
fixation, other samples are classified as gap samples.

(8) After sample-wise classification, consecutive samples with the same label are grouped
into events, defined by a type (fixation or gap) as well as a start and end time. The resulting
event sequence is further processed in order to filter out events which are physiologically
not plausible.

(8.1) First, a micro-saccade filter is applied which removes all gaps which have an
amplitude below a minimum saccade amplitude a =10° and which are shorter than a

minimum saccade duration t = 10ms. The amplitude is calculated as the angle between

start and end point of the event. Removing a gap event leads to automatic merging of the
two neighboring fixations.

(8.2) Second, all fixations which are shorter than a minimum fixation length d =70ms

are removed, automatically merging the neighboring gap events.

The resulting event sequence is the output of the fixation detector. We verified that fixation
detection performance in highly dynamic real-world scenarios benefits significantly from
both the optic-flow compensation stage and the adaptive thresholding [2]. In effect, the
Pupil Labs fixation detector regulates its sensitivity, allowing for fine-grained detection of
fixations in static experimental settings, while maintaining robustness in more dynamic
situations.

In case of recordings made with Pupil Invisible, the same algorithm is used, however,
without IMU and with a fixed velocity threshold. Effectively, this means that the gain factor g
is set to zero. The other parameters in this case are: v,=900px/s,a =15t = 60ms,

andd . = 60ms.
min



Parameter Symbol Neon Pupil Invisible
Minimum velocity Vo 750 px/s 900 px/s
threshold

Gain g 0.8 0
Minimum saccade Amin 1.0° 1.5°
amplitude

Minimum saccade tmin 10 ms 60 ms
duration

Minimum fixation Amin 70 ms 60 ms
duration
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