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Background 

Humans visually sample the world by intermittently stabilizing gaze onto discrete targets in 
their environment. Such fixations are interrupted by saccades, during which gaze is rapidly 
redirected onto the next target in the visual scene. In dynamic contexts, i.e. one of the 
intended use-scenarios of our eye trackers, fixational gaze stabilization is achieved by 
compensatory eye movements counteracting head and body motion. In other words, even 
while fixating visual targets, our eyes are almost never completely at rest.  
 
The above functional definition of a fixation [1] is well suited for the context of 
head-mounted eye tracking and was therefore adopted for the Pupil Labs fixation detector. 
Every time interval during which gaze is stabilized towards a visual target is considered a 
fixation, explicitly including compensatory eye movements in the presence of head or body 
motion. 
 
In eye-tracking studies employing remote eye trackers with head-restrained subjects, gaze 
direction can often be expressed in a world-centered coordinate system, e.g. pixel 
coordinates of a stimulus screen. In such a setup, a standard approach to automated 
fixation detection is the I-VT (identification by velocity threshold) algorithm, which classifies 
all samples with gaze velocities below a given threshold value as belonging to a fixation. 
 
For freely moving subjects wearing one of our head-mounted eye trackers, a naive 
application of the I-VT approach, however, would be prone to errors. Here, gaze direction is 
given in a subject-centered coordinate system, more specifically in the pixel space of the 
front-facing scene camera. When a subject moves their head during a fixation, the 
perspective view of the fixated visual target changes. This induces a concomitant shift of the 
measured gaze direction in scene camera space. Hence, fixations are not necessarily well 
characterized by low gaze velocities in this case.  
 
With this in mind, we developed a method for the Pupil Labs fixation detector that works 
robustly and accurately under both dynamic and static conditions. For an in-depth 
discussion and evaluation of our approach see our peer-reviewed publication [2]. Our aim 
was to have a transparent processing pipeline that guarantees interpretability of internal 
operations and parameters. To achieve this, we extended the classic I-VT algorithm with 
three additional modules: 
 

1.​ We use an optic-flow-based velocity-correction stage which effectively compensates 
for dynamic gaze stabilization during head and body turns. 

2.​ We use an adaptive velocity threshold which adjusts the sensitivity of the algorithm 
according to the intensity of head motion. 

 
 



3.​ We use a set of event-based post-processing filters. 
 
In practice, we estimate global optic flow in scene-camera pixel space based on the output 
of the inertial measurement unit (IMU). As the IMU provides a direct quantification of head 
motion, this approach is equivalent to, but computationally more efficient than calculating 
global optic flow from the video stream. We fall back to the latter option whenever the IMU 
sensor stream is unavailable.  
  
All parameters of the algorithm (see the next section) were optimized on device-specific 
in-house datasets, comprising hand-labeled fixations from both static and dynamic 
real-world scenarios. Note that the algorithm is optimized towards fixation detection 
performance, not saccade detection performance. While gaps between fixations often 
represent saccades, sometimes they also reflect periods of mere low signal-to-noise ratio. 
 

 
 
 



Implementation details 
In the following, we will describe the full algorithmic pipeline of the Pupil Labs fixation 
detector. Parameters given in the text are for Neon. Corresponding parameters for Pupil 
Invisible are provided in the last paragraph.  
 
The Pupil Labs fixation detector (see Figure 1) takes three data streams as input: the time 
series of gaze data at 200Hz, the video from the front-facing scene camera at 30Hz, as well 
as the time series of IMU measurements at 110 Hz (when available).  
  
(1) The gaze data is first low-pass filtered using a Savitzky-Golay filter with 55 ms window 
length and a polynomial of 3rd grade.  
 

(2) Gaze velocity  is computed from the filtered gaze data as the forward difference 𝑣

between consecutive samples in pixels/sec. 
 
(3) Optic flow is estimated for each frame of the scene camera video by transforming the 
concurrent movement of the eye tracking headset as measured by the IMU into 
corresponding translation vectors of pixels in the visual field of the scene camera. Optic flow 
vectors are computed in pixels/sec on a regular grid with a spacing of 100 pixels. Whenever 
the IMU is not available for a recording, optic flow is calculated directly from consecutive 
video frames using the Lucas-Kanade method as a fallback (3*). 
 

(4) Then, for each frame a global optic flow vector  is constructed by averaging all optic 𝑜
flow vectors over space. It is then upsampled to 200Hz via linear interpolation. This global 
optic flow vector represents an estimate of whole-field motion of the visual scene, as elicited 
mainly by head rotations and body turns (same for 4*). 
 

(5) Next, we correct the gaze velocity  by subtracting the global optic flow  and calculate 𝑣 𝑜

the magnitude of the resulting vector, thus constructing a measure of relative gaze velocity 

. This step is based on the notion that in the case of gaze stabilization, image content 𝑣
𝑟𝑒𝑙

needs to move in unison with the gaze point in scene camera coordinates. Any significant 
deviation from a parallel movement of gaze and image content corresponds to a shift in the 
specific gaze target, i.e. indicating the end of a fixation. From this follows that relative gaze 
velocity is suitable as an input to an I-VT algorithm, which assumes that gaze velocity must 
be low during fixations.  
 
(6) Instead of using a standard fixed velocity threshold, however, we use an adaptive 
threshold which is modulated by the general level of intensity of optic flow during a time 
interval. This accounts for the fact that optic flow compensation might work less precisely 
during swift movements of the subject, e.g. head or body turns, due to motion-blur in the 
camera image or gaze prediction errors at such moments. The value of the adaptive 
threshold is set as  
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where  and  are the x- and y-components of , respectively. The sum is taken over all  𝑜
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samples within a sliding window of 300 ms length (200 ms for the fallback option). For the 
other parameters, the Pupil Labs fixation detector for Neon uses  px/s (700 px/s for 𝑣

0
= 750

the fallback option) and .  𝑔 = 0. 8
 
(7) The adaptive velocity threshold is then applied as a classification criterion, analogously 
to a standard I-VT algorithm: samples below the threshold are considered to be part of a 
fixation, other samples are classified as gap samples.  
 
(8) After sample-wise classification, consecutive samples with the same label are grouped 
into events, defined by a type (fixation or gap) as well as a start and end time. The resulting 
event sequence is further processed in order to filter out events which are physiologically 
not plausible.  
 
(8.1) First, a micro-saccade filter is applied which removes all gaps which have an 
amplitude below a minimum saccade amplitude  and which are shorter than a 𝑎

𝑚𝑖𝑛
= 1. 0°

minimum saccade duration . The amplitude is calculated as the angle between 𝑡
𝑚𝑖𝑛

=  10 𝑚𝑠

start and end point of the event. Removing a gap event leads to automatic merging of the 
two neighboring fixations. 
 
(8.2) Second, all fixations which are shorter than a minimum fixation length  𝑑

𝑚𝑖𝑛
= 70 𝑚𝑠

are removed, automatically merging the neighboring gap events. 
 
The resulting event sequence is the output of the fixation detector. We verified that fixation 
detection performance in highly dynamic real-world scenarios benefits significantly from 
both the optic-flow compensation stage and the adaptive thresholding [2]. In effect, the 
Pupil Labs fixation detector regulates its sensitivity, allowing for fine-grained detection of 
fixations in static experimental settings, while maintaining robustness in more dynamic 
situations. 
 
In case of recordings made with Pupil Invisible, the same algorithm is used, however, 
without IMU and with a fixed velocity threshold. Effectively, this means that the gain factor  𝑔
is set to zero. The other parameters in this case are: , ,  𝑣

0
= 900 𝑝𝑥/𝑠 𝑎

𝑚𝑖𝑛
= 1. 5° 𝑡

𝑚𝑖𝑛
=  60 𝑚𝑠,

and . 𝑑
𝑚𝑖𝑛

= 60 𝑚𝑠

 

 
 



 
 
 

Parameter Symbol Neon Pupil Invisible 

Minimum velocity 
threshold 

 
 

750 px/s  
 

900 px/s 

Gain  0.8 0 

Minimum saccade 
amplitude 

 1.0° 1.5° 

Minimum saccade 
duration 

 10 ms 60 ms 

Minimum fixation 
duration 

 70 ms 60 ms 
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